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Abstract -- This paper presents a new joint frame synchroniza-

tion and frequency offset estimation algorithm for orthogonal 

frequency division multiplexing (OFDM) systems as a modifica-

tion to Zhang’s method [7]. By designing a new training pream-

ble weighted by PN sequence, the timing estimator is improved 

(at least 3dB with low SNR). By estimating time offset first, the 

computational load is greatly reduced with no loss in frequency 

offset estimation accuracy. The performance of the proposed 

method is evaluated by computer simulations in terms of timing 

error rate (TER) together with computational complexity. 

 
Index Terms -- OFDM, timing synchronization, frequency off-

set estimation, computational complexity 

 
 

I. INTRODUCTION 
 

RTHOGONAL frequency division multiplexing (OFDM) 

has been widely used in communication systems such as 

digital audio broadcasting (DAB), digital video broadcasting 

(DVB), and asymmetric digital subscriber line (ADSL) 

modems together with wireless local area network (LAN) 

because of its robustness to inter symbol interference (ISI) 

and high efficiency in making use of bandwidth resources. 

However, it is very sensitive to synchronization errors caused 

by multipath delay and frequency shift as well as oscillator 

instability. To overcome this disadvantage, several approach-

es, data-aided or non-data-aided, have been proposed to per-

form timing synchronization and frequency offset estimation 

either jointly or individually. 

Data aided schemes are more suitable for applications re-

quiring fast and reliable synchronization. A popular algorithm 

to perform timing synchronization and frequency offset esti-

mation jointly is proposed by Schmidl [1]. This algorithm has 

a timing metric, which is used to judge the beginning of the 

training symbol, robust to frequency offset. However, it has a 

plateau which introduces uncertainty when judging the start-

ing point. Besides, two training symbols are required to esti-

mate frequency offset, decreasing the overall system effi-

ciency. 

Kim’s algorithm [2] uses only one symbol for both timing 

and frequency offset estimation. However, its frequency off- 
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set estimation is based on perfect symbol timing, an assump-

tion which cannot always be guaranteed due to the plateau. 

To eliminate the plateau inherent in Schmidl and Kim al-

gorithm, several modifications are made. Minn’s [3] method 

is free from the plateau. Nevertheless, the performance dete-

riorates when the number of subcarrier is small and/or in 

multipath fading channel. An approach proposed by Park [4] 

yields an impulse shaped timing metric, but it suffers from 

side-peaks. [5] and [6] propose timing and frequency offset 

synchronization methods for preambles with constant 

envelope.  

Zhang’s method [7] is able to get more accurate frequency 

offset estimation than that of Schmidl. This improvement, 

however, is at the expense of far heavier computational load. 

Furthermore, its timing estimator is not precise enough to 

ensure satisfactory operation of frequency offset estimator. 

In this paper, a timing estimator with the training preamble 

weighted by PN sequence similar to [5] is adopted as a mod-

ification to Zhang’s method. On one hand, it achieves better 

timing synchronization performance. On another hand, 

Zhang’s algorithm is greatly simplified with no loss in fre-

quency offset estimation accuracy. 

This paper is organized as follows. Section 2 gives the 

system model. In Section 3, Zhang’s algorithm is briefly de-

scribed. Section 4 is about the proposed algorithm performing 

joint timing synchronization and frequency offset estimation. 

Section 5 gives simulation results and computational com-

plexity analysis. Finally Section 6 concludes the whole paper. 

 

 

II. SYSTEM MODEL 
 

  The OFDM samples at the outputs of the IFFT are given by 
 

𝑥(𝑖) =
1

 𝑁
 𝑋𝑘𝑒

𝑗2𝜋𝑖𝑘 /𝑁𝑁𝑢−1
𝑘=0 , 𝑖 = 0,1,2 … , 𝑁 − 1   (1) 

 

where Xk is the complex modulated symbol on the k-th sub-

carrier, 𝑁𝑢  and N is the size of subcarriers and IFFT, respec-

tively. An OFDM symbol is denoted as  

𝑥 =  𝑥𝑁−𝐺 ,…,𝑥𝑁−1,𝑥0, 𝑥1,…𝑥𝑁−1           (2) 
 

The first G samples, as same as the last G ones of the training 

symbol, are added to make up of the cyclic prefix (CP). 

  At the receiver, the received samples are modeled as 

 

O 



𝑦(𝑖) =exp(j2πεi/N+φ) 𝑕𝑙𝑥 𝑖 − 𝜏𝑙 + 𝑛(𝑖)
𝑁𝐿−1
𝑙=0     (3) 

 

where 𝜏𝑙  is the unknown arrival time of a symbol, ε is the 

carrier frequency offset normalized to subcarrier spacing, φ is 

the initial phase, 𝑛𝑖  is the sample of zero mean complex 

Gaussian noise process with variance 𝜍𝑖
2 and 𝑁𝐿  is the 

number of resolvable path. 

  Synchronization of an OFDM signal requires finding and 

compensating the symbol timing and carrier frequency offset. 

 

 

III．THE AVAILABLE TIMING AND FREQUENCY 

OFFSET ESTIMATION METHOD [7] 

 

Samples in the preamble satisfy two conditions: 
 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1:  𝑥𝑖 = 𝑥𝑖+𝑁/2 ,    𝑖 = 0,1, … , 𝑁/2 − 1    (4) 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2:  𝑥𝑖 = 𝑥𝑁−𝑖 ,       𝑖 = 1,2, … , 𝑁/2 − 1    (5) 
 

Such a sequence could be generated in the frequency do-

main by modulating only even numbered subcarriers and the 

modulating data are symmetric about the 𝑁/2-th subcarrier, 

i.e., 

𝑋𝑖 = 𝑋𝑁−𝑖      for 𝑖 = 1,2, … , 𝑁/2        (6) 
 

In the receiver, the relationship between a transmitted sam-

ple and its received version is 
 

𝑟 𝑖 = 𝑥 𝑖 − 𝜃 𝑒𝑗2𝜋𝜀𝑖 /𝑁 + 𝑛(𝑖)         (7) 
 

where θ is the correct timing point. 

  Zhang’s algorithm is divided into two modes: acquisition 

mode and tracking mode. In the former stage, timing and 

coarse frequency offsets are estimated simultaneously while 

in the latter stage, a fine adjustment algorithm is taken to es-

timate the remaining carrier frequency offset. 

In the acquisition mode, define a vector based on condition 

2: 
 

Ψ𝑖 =  Ψ𝑖 1 , Ψ𝑖 2 , … , Ψ𝑖 𝑁/2 − 1              (8) 
 

      =  
Γ𝑖 𝑁/2 − 1 

 Γ𝑖 𝑁/2 − 1  
,

Γ𝑖 𝑁/2 − 2 

 Γ𝑖 𝑁/2 − 2  
, … ,

Γ𝑖 1 

 Γ𝑖 1  
  

 

where Γ𝑖 𝑘 = 𝑟 𝑖 + 𝑁 − 𝑘 ·𝑟∗(𝑖 + 𝑘) and: 
 

Φ𝑖 𝑓 =  Ψ𝑖(𝑘) ·𝑒−𝑗2𝜋𝑓𝑘𝑁/2−1
𝑘=1           (9) 

 

where  𝑓 ≤ 1/2. 

  At the correct timing point, Equ. (8) could be simplified as 

follows: 
 

Ψ𝜃 =  𝑒𝑗2𝜋𝜀 ·2/𝑁 , 𝑒𝑗2𝜋𝜀 ·4/𝑁 , … , 𝑒𝑗2𝜋𝜀 ·(𝑁−2)/𝑁     (10) 
 

  From Equ. (10) it is known that Φ𝜃 𝑓  gets its maximum 

value at f=2ε/N, i.e., 
 

𝑓 =
arg max

f
  Φ𝜃 𝑓  2             (11) 

 

Accordingly, the carrier frequency offset is coarsely estimated 

from equation 𝜀 = 𝑁𝑓 /2. 

  Note that  Φ𝑖 𝑓  2  gets its maximum value when and 

only when both 𝜃  and 𝑓  are estimated correctly. Hence, 

timing and coarse frequency offset estimation could be per-

formed at the same time by searching the maximum value in 

the following matrix: 
 

Λ2𝐾+1,𝐿+1 = 
 

 
 
 
 
 
 
 
 
 
 
 
 

 Φ0 𝐾 ·Δ𝑓  2  Φ1 𝐾 ·Δ𝑓  2  …   Φ𝐿 𝐾 ·Δ𝑓  2

.                     .                .              .

.                     .                 .             .

.                     .                  .            .
 Φ0 Δ𝑓  2       Φ1 Δ𝑓  2    …   Φ𝐿 Δ𝑓  2

 Φ0 0  2       Φ1 0  2     …   Φ𝐿 0  2

 Φ0 −Δ𝑓  2    Φ1 −Δ𝑓  2   …   Φ𝐿 −Δ𝑓  2

.                     .                .              .

.                     .                 .             .

.                     .                  .            .
 Φ0 −𝐾 ·Δ𝑓  2  Φ1 −𝐾 ·Δ𝑓  2 …  Φ𝐿 −𝐾 ·Δ𝑓  2 

 
 
 
 
 
 
 
 
 
 
 

   (12) 

 

where (L+1) is the length of the time window, Δ𝑓 is the 

frequency resolution and 2 ·𝐾 ·Δ𝑓 equals the coarse esti-

mation range of the frequency window, which is up to half 

the total signal bandwidth. Assume the largest element in the 

matrix is  Φ𝑗  𝑖 ·Δ𝑓  
2
, then 𝜃 = 𝑗, 𝜀 = (𝑁 ·𝑖 ·Δ𝑓)/2.  

In the tracking mode, only the remaining frequency offset 

εR is left: 

𝜀𝑅 = 𝜀 − 𝜀                 (13) 
 

For a given N and ε, the value of εR is determined by that of 

Δf. A fine adjustment is deployed to estimate εR. Based on 

condition 1, a carrier frequency offset fine adjustment algo-

rithm is derived as: 
 

𝜀1 =
angle   𝑟 𝜃+𝑖+𝑁/2 𝑟∗ 𝜃+𝑖 

𝑁/2−1
𝑖=0  

𝜋
      (14) 

 

which is just the Schmidl’s algorithm. 

  Based on condition 2, εR could be estimated as: 
 

𝜀2 =
𝑁   𝐷(𝑘) ·(𝑁−2𝑘)·𝑎𝑛𝑔𝑙𝑒  𝐷(𝑘) 

𝑁/2−1
1

2𝜋   𝐷(𝑘) 
𝑁/2−1
1 ·(𝑁−2𝑘)2

     (15) 
 

where 𝐷 𝑘 = 𝑟(𝜃 + 𝑁 − 𝑘) ·𝑟∗(𝜃 + 𝑘). 

  Estimation range of the carrier frequency offset fine ad-

justment algorithm is only ±𝑁/2(𝑁 − 2) subcarrier spacing, 

imposing the following restriction on ∆𝑓: 
 

 ∆𝑓 < 1/2(𝑁 − 2)             (16) 
 

  When we consider both conditions 1 and 2, a fine adjust-

ment estimator with weighted factors can be derived as: 
 

𝜀 =
𝜀1 +𝜌·𝜀2 

1+𝜌
              (17) 

 

where ρ is the weighted factor and 0 ≤ 𝜌 ≤ 1. The larger 𝜌 

is, the more accurate 𝜀  is. When 𝜌 is 0, the frequency offset 

estimator is reduced to the Schmidl’s algorithm. 

 

 

III. PROPOSED SYNCHRONIZATION AND FREQUEN-

CY OFFSET ESTIMATION METHOD 

 

  Zhang’s method performs the timing synchronization and 

coarse frequency offset estimation simultaneously. However, 

several factors make the algorithm unsatisfactory. 



 
Fig. 1 Timing metric of Zhang’s algorithm Fig. 2 Timing metric of proposed and other algorithm 

 

 

(a) The timing metric has three discernible side-peaks 

which could not be eliminated even though 𝜀𝑅 is zero, 

as we learn from Fig. 1. These side-peaks would further 

result in wrong judgments. 
(b) The computational load to get the matrix is too heavy to 

make the algorithm realizable. In all, the matrix is com-

posed of (2K+1)·(L+1) elements. Unfortunately, none of 

them can be calculated iteratively. 

(c) The accuracy of timing estimator is greatly influenced 

by the remaining carrier frequency offset. From Fig. 1, 

when εR is 0, the difference between the correct timing 

point and side-peaks is small. The difference continually 

decreases as εR becomes larger. When εR is 0.5, it is 

quite hard to distinguish them. We know that εR largely 

depends on Δf. Thus a small Δf indicates not only a more 

precise timing estimator but an even heavier computa-

tional load for a fixed frequency offset estimation range.  

(d) We learn from Equ. (16) that for a system with a large 

number of subcarrier, Δf has to be smaller, which in turn 

indicates a larger K and a heavier computational load. 

Consider a case in which N is increased from 256 to 

1024 (L+1=160 and ∆𝑓 = 1/2(𝑁 − 2)), K has to be 

increased from 254 to 1022 and there would be about 

300% more elements in Equ. (12). 

(e) In the tracking mode, the fine adjustment algorithm 

works only when the correct timing point is perfectly 

found.  

All the above factors would prevent Zhang’s algorithm 

from working correctly and effectively. In order to improve 

Zhang’s timing estimator performance and simplify the algo-

rithm, a modified method based on [5] and [7] is proposed. 

  In the proposed method, a single training symbol is used to 

estimate timing and frequency offset jointly. Firstly, the start-

ing point of the proposed preamble is determined, so that the 

original complex matrix would be simplified into a one di-

mensional one. Then the coarse frequency offset in the acqui-

sition mode and fine adjustment algorithm in the tracking 

mode would be proceeded. 

  The Schmidl timing estimator is robust to frequency offset. 

Nevertheless, there is a plateau in the timing metric which 

results in error when we try to determine the exact timing 

point of the symbol. This is because the values of the timing 

metric around the correct starting point are almost the same 

[4] [5]. To enlarge the difference between two adjacent values 

of the timing metric, a training preamble with PN sequence 

weighted factor is introduced. 

At the transmitter, the new preamble can be defined as 
 

𝑥𝑖
′ = 𝑠𝑖 ·𝑥𝑖 , 𝑘 = 0,1, … , 𝑁 − 1         (18) 

 

where si, drawn from PN sequence with a value either +1 or 

-1, is the weighted factor of the i-th sample at IFFT outputs. 

  At the receiver, the received symbol is demodulated by the 

same PN sequence and the corresponding pairs of samples are 

correlated. The new timing metric is defined as: 
 

𝑀 𝑑 =  𝑃(𝑑) 2/ 𝑅(𝑑) 2            (19) 

where 
 

𝑃 𝑑 =  𝑠𝑘𝑠𝑘+𝑁/2𝑟
∗ 𝑑 + 𝑘 𝑁/2−1

𝑘=0 𝑟 𝑑 + 𝑘 + 𝑁/2   (20) 

 

𝑅 𝑑 =   𝑟(𝑑 + 𝑘 + 𝑁/2) 2𝑁/2−1
𝑘=0          (21) 

 

  Since the PN sequence samples are generated randomly, 

the influence exerted by weighted factors would be removed 

only at the correct timing point, which is taken as the start of 

the useful part of the training symbol, and values around that 

particular point would be relatively small. 

  The timing metric of proposed method in AWGN environ-

ment is shown in Fig. 2. For comparison, Schmidl, Minn and 

Park timing estimators are also presented. The frequency off-

set is set to be 0.5 subcarrier spacing but it does not exert 

much influence on the timing estimators as they are robust to 

it. The correct timing point is indexed 0 in the figure. As ex-

pected, the proposed timing metric shaped like an impulse 

has neither a plateau nor side-peaks, making a more accurate 

timing synchronization possible. 

  As soon as the correct timing point, i.e., θ, is located, Equ. 

(9) could be calculated to coarsely estimate the frequency 

offset. Stated in another way, to get 𝑓 , we now only need to 

calculate one column of Equ. (12) and look for the maximum 

value. 
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(a) (b) 

Fig. 3 TER comparison of different timing estimators 

 

 

  Then in the tracking mode, the received samples are com-

pensated with coarse frequency offset, and the fine adjust-

ment algorithm (Equ. (17)) is taken to estimate the remaining 

frequency offset εR. The modification to the original timing 

estimator does not in the least influence the coarse and fine 

frequency offset estimation. 

  Overall, the proposed algorithm has some attractive fea-

tures superior to Zhang’s method. 

(a) The computational complexity is significantly reduced 

because the timing synchronization is performed in the 

beginning and the original complex matrix is simplified 

into one dimension. That is, only one column containing 

(2K+1) elements is needed in the acquisition mode, far 

smaller than that of Zhang’s timing estimator, which is 

(2K+1)·(L+1).  

(b) The proposed timing estimator is robust to frequency 

offset, so it would not be affected by the value of Δf. To 

further simplify the algorithm, K could be assigned a 

smaller value by increasing Δf slightly as long as the 

fine adjustment algorithm works. For instance, if Δf is 

increased from 0.0025 to 0.003875, K would be 53.9% 

smaller, i.e., it is decreased from 200 to 130. 

(c) The PN sequence weighted factors lead to an impulse 

shaped timing metric without plateau and side-peaks, 

making an accurate timing estimator with less error va-

riance possible.  

(d) The proposed algorithm exerts no influence on the 

coarse and fine frequency offset estimation. 

Consequently, the proposed algorithm has the virtue of be-

ing precise and affordable. The timing performance and 

computational complexity is further illustrated by computer 

simulations. 

 

 

IV. SIMULATIONS AND ANALYSIS 

 

  In this paper, a wireless system operating at 5 GHz with 

bandwidth of 5 MHz and Maximum Doppler Shift of 48.1 Hz 

is assumed for simulations. An outdoor dispersive, fading 

channel is modeled as 5 independent Rayleigh-fading paths 

with path delay τi of 0,3,5,9, and 12 samples and path gains 

given by hi=exp(-τi ). The length of the preamble is 256 and 

that of CP is 32. QPSK modulation is employed and 10000 

simulations are run. 

 

 

A. Timing Synchronization Analysis 

 

  As we know, perfect timing point estimation is crucial for 

the operation of the fine adjustment algorithm. In Fig. 3, the 

performance of different timing estimators are evaluated in 

terms of timing error rate (TER). For Schmidl [1] and Minn 

[3] algorithm, TER is equal to the probability that the esti-

mated starting point is outside CP. For Park [4], Zhang [7] 

and the proposed algorithm, TER is the probability that the 

estimated starting point is not the correct timing point.  

  Fig. 3(a) indicates that Zhang’s timing estimator is very 

sensitive to remaining frequency offset and has a large TER 

even though the frequency offset is perfectly estimated (εR=0) 

in the acquisition stage. By comparison, the proposed algo-

rithm is more accurate than Zhang’s timing algorithm. When 

SNR is low, improvement about 3dB and 4dB of the proposed 

timing estimator compared to [7] could be obtained when the 

remaining carrier frequency offset 𝜀𝑅  equals 0.0, 0.2, re-

spectively. With SNR of 15dB, TER of proposed algorithm is 

0.0067, while TER of Zhang’s method is 0.0122, 0.0134 and 

0.2177 when ρ equals 0.0, 0.2 and 0.5, respectively. This is 

due to the improved timing estimator robust to 𝜀𝑅 and free 

from side-peaks. 

  From Fig. 3(b) it is also clear that the proposed algorithm 

has better performance than Schmidl’s, Minn’s and Park’s. 

When SNR is low, improvement about 1dB and 2dB of the 

proposed timing estimator compared to [4] and [1], respec-

tively, could be obtained. When SNR is 15dB, TER of pro-

posed, Schmmidl, Minn and Park algorithm is 0.0067, 0.0116 

0.0371 and 0.0085.This is because: 

(a) It does not have a plateau created in [1]. 

(b) It does not have side-peaks inherent in [3] and [4]. 
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(c) The timing metric is shaped as an impulse, which is bet-

ter than [3] even though side-peaks are not taken into 

account. 

Then in the tracking mode, the fine adjustment algorithm is 

adopted to get an estimation of 𝜀𝑅 more accurate than that of 

Schmidl. In the AWGN channel, performance improvement 

about 1 dB of the fine adjustment algorithm compared to 

Schmidl’s algorithm is obtained when ρ is 1, while in multi-

path fading channel, the improvement would be up to 4.6dB 

in a low SNR [7].The improved timing synchronization algo-

rithm makes Zhang’s frequency offset estimation method 

feasible and reliable. 

 

 

B. Computational Complexity Analysis 

 

  Detailed analysis on computational complexity listed in 

Table 1 illustrates the proposed algorithm’s efficiency. The 

computational complexity of Zhang algorithm is significantly 

reduced by preceding the timing synchronization since it 

enables the original matrix to be simplified into one dimen-

sion. On one hand, it saves considerable time to perform the 

complex algorithm. On another hand, it reduces the overall 

system cost by decreasing the number of devices such as ex-

pensive memory elements. For example, when N=256, K=160, 

L+1=160, Δf=0.003125, the calculation amount of complex 

multiplication is 7866.3% less than that of the original algo-

rithm. Note that in the table, comp mul, comp div, comp add, 

exp oper and mode oper means complex multiplication, com-

plex division, complex add, exponential operation and mode 

operation, respectively. 

 

 

V. Conclusions 

 

  An efficient joint frame timing and frequency offset esti-

mation algorithm for OFDM systems as a modification to 

Zhang’s method has been proposed. By using PN sequence 

weighted factors, an impulse shaped timing metric robust to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Computational Complexity Analysis 
 

 Zhang Proposed 

comp mul (2K+2)(N/2-1)(L+1) (K+1)(N-2)+(L+1)(N+1.75) 

comp div (N/2-1)(L+1) (N/2+L) 

comp add (2K+1)(N/2-2)(L+1) (2K+1)(N/2-2)+(L+1)(N-2) 

exp oper (2K+1)(N/2-1)(L+1) (2K+1)(N/2-1) 

mod oper (N/2+2K)(L+1) (N/2+2K) 

 

 

frequency offset and free from side-peaks is obtained. Per-

forming timing synchronization first, we are able to simplify 

Zhang’s algorithm significantly with better timing synchro-

nization performance and no loss in the accuracy of frequen-

cy offset estimation. Simulation results have proved the ac-

curacy and efficiency of the proposed algorithm. 
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